

Astrometry and Subpixel Detector Characterization

M. Shao, R. Trahan JPL WPS March 3, 2016
Pasadena Hilton

Outline

- Why is subpixel characterization important?
 - Accurate photometry and astrometry
 - Focal plane not Nyquist sampled
- How does subpixel characterization work?
 - Projection of a fringe "ruler" onto the detector
 - Fit the fringe and determine systematic pixel position errors
- Prior work with CCDs
- Status of experiments with H2RG IR detector

WFIRST Focal Plane

- Detector not Nyquist sampled
 - Pixel size 0.1 arcsec
 - $-\lambda/D$ @1.2um ~0.1 arcsec
 - ~1 pixel/(λ /D) but Nyquist sampling is 2 pixels/ (λ /D)
- Nyquist sampling:
 - Gives accurate astrometry and shape measurement
 - Can be obtained by dithering the image on the detector.

Significant errors can occur if the QE within a pixel is not constant. In CCDs errors at the 0.01pix level are common. Using the sqrt(N) argument works but N can be large (~106) and the noise needs to be uncorrelated.

PSF (even with perfect optics), varies across the FOV.

QE varies within a pixel and is not fully repeatable between pixels. When dithering an image ½ pixel, QE changes across a pixel result in significant photometric errors -> astrometry/shape errors 3

Experiment Setup with H2RG Detector

- Laser beam split to two fibers
- Relative phase of two paths is modulated
- Multiple pairs of fibers can project fringes with different orientations and spatial frequencies
- Fringe serves as a stable, spatially precise reference

1D Example of Fringe "Ruler"

- The sine wave is assumed to be sampled at integer pixel locations.
- If pixel is actually dislocated, the measurement will be attributed to the wrong spatial location.
- The fringe provides a precise ruler to place the measured value at its true location.

Note: Fringe must be moved to multiple locations because offsets near the peak and trough can't be resolved.

Fringe spacing >> pixel width measure pixel position. < pixel width measures fourier components of the Fourier transform of the intrapixel QE(x,y)

The near perfect sinusoidal fringes are a result of interference between two wavefronts from single mode optical fibers, whose spherical wavefront can approach $\lambda/10,000$.

The purity of this sine wave provides unequalled geometric and photometric accuracy.

Detector Linearity

- Nonlinearity observed by performing multiple non-destructive reads of a single pixel
- Nonlinearity model:
 - Observed # photoelectrons, Q [e-]
 - True # photoelectrons, q [e-]
 - Nonlinearity coefficient, $\beta = 3.6e-7 [1/e-]$
 - $-Q = q \beta q^2$
- Nonlinearity calibration:
 - Observed Pixel Value, \(\tilde{I} \) [ADU]
 - Detector gain, G = 2.35 [e-/ADU]

Image Normalization

- Mixing of the two fields gives the observed intensity $I = I_1 + I_2 + 2\sqrt{I_1I_2}\sin\varphi$
- I_1 and I_2 are estimated by collecting "flat" $F^{i,j}$ images
- Reset noise and dark current estimated by collecting "dark" $D^{i,j}$ images
- Multiple flat and dark images are averaged to eliminate read noise
- Normalization: $\hat{I}^{i,j} = \frac{I^{i,j} \langle D^{i,j} \rangle}{\langle F_1^{i,j} \rangle + \langle F_2^{i,j} \rangle 2\langle D^{i,j} \rangle}$
- Normalized pixel is ideally: $\hat{I} = 1 + \frac{2\sqrt{I_1I_2}}{I_1+I_2}\sin\varphi$

Image Normalization (cont.)

Raw Image

Normalized Image

Solving for Pixel Displacement

- **1. Spatial Fit** Independently fit every image of the fringe to estimate the intensity, visibility, phase, and orientation of the fringe.
 - Result is estimated value of the true fringe at every pixel.
 - Large number of pixels averages out pixel position errors.
- 2. Temporal Fit For one pixel at a time, independently fit all images to the spatial fit to estimate the temporally consistent intensity error and position error.
 - Results are the estimated pixel offsets along the fringe
 - Large number of images averages out read noise and photon noise errors.
- 3. Iterate using corrected pixel locations

Repeat for several fringe orientations

Fringe Spatial Fit

- A least-squares fit is performed to each normalized image to estimate the 5 parameters of the true fringe in each image
- Ideal fringe: $\hat{I} = 1 + \frac{2\sqrt{I_1I_2}}{I_1+I_2}\sin\varphi$
- Parameterized fit: $\hat{I}_n^{i,j} = I_n + V_n \sin(\varphi_n + \vec{k}_n \cdot \hat{r}^{i,j})$
- Parameters: $\{I_n, V_n, \varphi_n, k_{n,x}, k_{n,y}\}$

Pixel Temporal Fit

- Phase term of every image differs because of modulation
- Expected pixel value from spatial fit is

$$\hat{I}_n^{i,j} = I_n + V_n \sin(\varphi_n + \vec{k}_n \cdot \hat{r}^{i,j})$$

 Add two new parameters for temporal fit. Allow for variation in mean, amplitude, and position along fringe at each pixel.

$$\begin{split} \hat{I}_{n}^{i,j} &= I_{n} t^{i,j} + V_{n} \alpha^{i,j} \sin \left(\varphi_{n} + \left\langle \vec{k}_{n} \right\rangle \cdot \vec{r}^{i,j} + \delta r^{i,j} \right) \\ &= I_{n} t^{i,j} + V_{n} \sin \varphi_{n} \underbrace{\left(\alpha^{i,j} \cos \left(\left\langle \vec{k} \right\rangle \cdot \vec{r}^{i,j} + \delta r^{i,j} \right) \right)}_{C^{i,j}} + V_{n} \cos \varphi_{n} \underbrace{\left(\alpha^{i,j} \sin \left(\left\langle \vec{k} \right\rangle \cdot \vec{r}^{i,j} + \delta r^{i,j} \right) \right)}_{S^{i,j}} \end{split}$$

Temporal parameters solved via pseudoinverse

$$\begin{bmatrix} t^{i,j} \\ C^{i,j} \\ S^{i,j} \end{bmatrix} = \begin{bmatrix} I_1 & V_1 \sin \varphi_1 & V_1 \cos \varphi_1 \\ I_2 & V_2 \sin \varphi_2 & V_2 \cos \varphi_2 \\ \vdots & \vdots & \vdots \\ I_N & V_N \sin \varphi_N & V_N \cos \varphi_N \end{bmatrix}^{\dagger} \begin{bmatrix} I_1^{i,j} \\ I_2^{i,j} \\ \vdots \\ I_N^{i,j} \end{bmatrix}$$

• Pixel offset along \vec{k} : $\delta r^{i,j} = \frac{1}{\left| \left\langle \vec{k} \right\rangle \right|} \left(\arctan \frac{S^{i,j}}{C^{i,j}} + m2\pi - \left\langle \vec{k} \right\rangle \cdot \vec{r}^{i,j} \right)$

Example Results from CCD

- Detector has four quadrants each with a different flat field response.
- Each half of the detector shows a 1.5% pixel skew in the ΔY pixel locations.

Current Experiment Status

- Testbed designed and built
- Detector
 - Noise levels measured and match expectations
 - Gain matches expected values
 - Detector nonlinearity observed and calibrated out. Laser intensity adjusted to try to stay within most linear region.
- Fringe Quality
 - Camera internal reflections causing problems
- Data Collection
 - Several preliminary datasets have been collected. Results show need to mitigate internal reflections.
- Data Processing
 - Data management software completed for managing 10,000's of images
 - Data processing performed in custom C++/CUDA software

Current Challenges

- Camera saturates before entire frame can be read when dark.
 Currently can only characterize 128x128 region of the chip at a time.
- Spurious Fringes Reflections between the detector chip and other surfaces are causing artifacts in the images.
 - Camera is inside of a vacuum sealed container which has a glass window.
 - Borrowed camera has a <u>filter glued on the detector</u>.
 - Remedies:
 - Post-process data to remove artifacts
 - Modulate light such that artifacts move around and are averaged out
 - Place entire experiment in vacuum chamber (not just detector)

Internal Reflection Problem

Vacuum Chamber

0 2000

- Fringes caused by the window, can be removed by tuning the laser a few Ghz.
- Fringes from the filter that's glued to the detector are harder to remove.
- But we can argue that this is not a systematic error but the signal. (the fringe from the filter changes the effective QE(x,y) within a pixel that produces photometric and astrometric errors. These errors are removed/reduced when the det/filt data are reduced using the metrology data.

Summary

- Subpixel characterization is needed for WFIRST to increase accuracy of astrometry measurements, and aid in removing detector errors in ellipticity measurements.
- Pixel position and higher order terms of intrapixel QE(x,y) can be measured by projecting laser fringes on the detector.
- Method has been demonstrated on CCD cameras with centroid error < 10⁻⁴ pixel/image ellipticity err < 10⁻³/image
- Characterization of a borrowed H2RG detector is underway
- But the current H2RG has a filter glued to the front of the chip. In the not too distant future, it would be more useful to the WFIRST project for us to test a H4RG detector.

Since WFIRST Meeting

- The borrowed detector was been cleaned up,
 - Almost all of the dust that caused the black dots with diffraction rings have been removed.
 - A new cold filter is in place to block thermal radiation from the room to the detector, significantly reducing the background to the detector
- Believe we can now measure pixel positions to close to 1e-3 pixels.
 - When the fringe spacing is >> 1 pixel, the fringe phase measures the pixel position.
 Different spacing fringes measure the pixel position with a different scale factor, but once corrected for that scale factor, the two measurements should give the same pixel offsets.
 - We're in the process of validating our measurements.
 - The next stage is put airy spots on the detector and measure centroiding precision as well as ellipticity measurements. (with and without applying pixel position offsets.
 - The pixel position offset is very close to a measure of the QE gradient within a pixel.
 - After that we'll start to apply fringes whose fringe spacing is close to, equal to and smaller than a pixel width. And characterize higher order QE variations within a pixel.
 - One expects some QE nonuniformity within a pixel, one questions is how repeatable is that between pixels.